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An algorithm is constructed for the ideal functioning of a plafformless and gyroscope-free inertial navigation system which uses 
the readings from 18 accelerometers, which can be jointly considered as a gravitational gradiometer. © 1999 Elsevier Science 
Ltd. All rights reserved. 

We consider a platformless inertial navigation system (PINS), the active elements of which are accelerometers 
and a canonical gravitational gradiometer (CGG). We introduce the following right systems of coordinates: (1) 
the Earth system of coordinates Ol~rl~, the origin of which is located at the centre of the Earth and the O1~ axis 
is directed along the vector of the absolute angular velocity of rotation of the Earth to e and the O1~ axis directed 
along the Greenwich meridian; (2) a geocentric system of coordinates Orxyz, the origin of which is located at the 
centre of the Earth, while the axes are parallel to the corresponding axes of the system of coordinates Oxyz which 
is rigidly connected with the object and rotates with an absolute angular velocity to. It is well known that the 
gravitational acceleration vector g(r) of the Earth's gravitation field is independent of the time t in the Earth system 
Ol~rl~. Hence, its total derivative with respect to time in the Ol~rl~ system is equal to 

a~/a~ = V S . ,  = G ( r ) . u  

where G(r)  is the tensor of the gradient of the acceleration due to gravity and v is the velocity vector of  the object 
relative to the Earth. The absolute velocity vo and the relative velocity v are related by the following equality 

Ua=U+t%xr 

where r is the radius vector from the centre of the Earth O1 to the origin O of the system of coordinates Oxyz. 
Calculating the absolute derivative with respect to time of both sides of the last equality, we obtain 

. / a  .- ,  + ( .  + . , )× , ,  +,,,. × ..) (1) 

where a derivative in the system of coordinates OlXyZ is denoted by a dot. By Newton's second law, the motion of 
an object satisfies the equation 

~aldt = a ÷ g' (2) 

where the apparent acceleration vector a is measured using accelerometers and g' is the vector of the gravitation 
field strength. 

We introduce the gravitational gradient tensor T(r), that is, T(r) = Vg'. Using Eq. (1), Eq. (2) can be written in 
the form 

u + ( .  + o % ) x u  = a + $ ,  [ . - - g ' - m ¢  X(We x r  ) (3) 

On expressing the derivatives of the vectors g and r in the system Ol~Vl~ in terms of the derivatives in the O~ryz 
system, we obtain 

t +(,,,--,),, co.).,,, i--,-(,,,-,,,,,)×r :u (4) 

By calculating the time derivative in the system O~yz for both sides of Eq. (3) and taking account of  Eq. (3) and 
the first equation of (4), we obtain 
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Fig. 1. 

i /+  2f~-a~ +(gZ + fZ 2 - T(r)).u = b + ( fZ-  fl ') .  a 

T(r) = G(r) + f~,2 (5) 

! 0 - w ,  m, I  I 0 "-~,z m~,l 

i -%w,  o I i-re. o~ o I 

(the angular acceleration of the rotation of the Earth is equal to zero). 
The CGG consists of six three-axis accelerometers or 18 single-axis high accuracy accelerometers located at a 

distance of L/2 from the origin of the system of coordinates Oxyz (Fig. 1). The observed component of the 
gravitational gradient tensor is approximated by the finite difference between each pair of accelerometer readings 
which have the same axis of the system of coordinates. 

For a uniaxial accelerometer, the Coriolis force is orthogonal to the velocity of the motion of the sensitive mass 
in the accelerometer. Consequently, it can be omitted. If force feedback is used in the accelerometer, we can assume 
that the relative acceleration of the sensitive mass is equal to zero. We therefore obtain 

• , d w  • 
a = a o +m x~m x p;+-~-t x p- g (6) 

where p is the radius vector from the origin of the system of coordinates Oxyz to the centre of the sensitive mass 
of  the accelerometer, ao is the absolute acceleration of the origin O of the system of coordinates Oxyz and the 
acceleration a is measured by the accelerometer. If, apart from the gravity force, no other external forces of any 
kind act on the sensitive mass in the accelerometer, that is a = 0, the relative acceleration is equal to the right- 
hand side of expression (6) with the opposite sign. 

Using the readings from the accelerometers ai at the pointspi (i = 1, 2 . . . . .  6), we obtain a formula from Eq. 
(6) for the change in the components of the gravitational gradient tensor 

A = T -  n ~ - h (7) 

where 

l r=V,o. 

I( ' ,- ' ,). (.,-.,), (.,-.,)J 
(8) 

Since ~ is an antisymmetric tensor and 7", f~2 are symmetric tensors, we obtain from Eq. (7) the angular 
acceleration 

(2,)-.L(.._.,) _(.._.,),j_-., ,13s.  yz) 

(relations which have not been written out are obtained by cyclic permutation of the subscripts). 

(9) 
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On integrating these equations, we obtain the absolute angular velocity oJ. 
We now consider the accuracy of the readings from the accelerometers which constitute the CGG. If an accuracy 

of 10-210 -4 E (FAtv6s, 1E = 16 -9 s -2) is required for the CGG andL = 0.1 m, it is necessary for the accelerometer 
to have a resolving power of 10-12-10 -14 m/s z. If a resolving power with respect to the angular accelerometer in 
rotation of 10-11-1() -13 rad/s 2 is required then the accelerometer must have a resolving power of 10 -12 - 10 -14 m/s 2. 

For a CGG based on Eq. (7), we can write Eq. (5) as 

O + 2 ~ . o - A . v  -=- i + ( f l -  f l ' ) . a  (10) 

where the vectors a and v refer to the centre of the gradiometer O, and the components of the tensorA are measured 
by the CGG. On integrating Eq. (10) with respect to time and using Eq. (3), we obtain 

t tt . t 0 

u =-21~- ua~+]l 2fl+a ( ) 
0 O0 0 

! 

F = a + I ( f / -  f/ ')" ad'¢ + g° - (Qo - n ' ° ) "  u° (11) 
0 

An initial value is denoted by a zero superscript. 
The angular acceleration vector is simultaneously measured by the CGG. On integrating Eq. (9), we obtain the 

angular velocity of rotation of the object 

1 
j [ ( a 4 - a 3 ) z - ( a 6 - a , ) ) . ] d ~ + t o  0 (135, 246, xyz) (12) (Ox = ~ "  0 

Since a, m, d~ and A can he measured and calculated, the relative velocity v can first be found from Eq. (11) 
using the initial values of r °, ~0, gO and the specified angular velocity me. Using the value which has been found, 
we then obtain the gravitational acceleration vector g and the position vector r from Eq. (3), the second equation 
of (4) and Eq. (11) 

g = - ( n - f Y ) ,  u + j ( 2 ~ + A ) ,  u d t + F - a  (13) 
0 

I 

"= l ( , - ( n -  n') . , )  + ,  ° ( 1 4 )  
0 

Al l  the vectors r, v and g are defined in the system of coordinates Ol{q~. 
In order to estimate the errors in a eGG-based PINS, we combine the equations for perturbed motion. On varying 

Eq. (3), the second equation of (4) and Eq. (10), we obtain 

60 +2f~.86- A.&v = 8A-u - 2q~,"/.0 + ~/I + ( ~ -  ~').qSa + ~ .  a 

= + ( m + m ' ) . u  (15) 

s , + ( m - m ' ) . , + ( n - n , ) . a ,  = 

Suppose ~a, ~o  and &4 are the instrumental errors of the meter, the accelerators and the CGG, respectively. 
We denote the deviations of  the position vector, the velocities and the gravitational acceleration vector from the 
values corresponding to the unperturbed operation of the system by ~r, 8v and 8g. 

In order to find the effect of instrumental errors of the inertial meters on the errors of the PINS, we will consider 
the case of  the motion of an object along the equator at a constant velocity Vo when the Earth is a non-rotating 
sphere, that is, o~e = 0. Then 

r = ~o~ d i a g C - l ,  - 1,2), g = [0,0, - g]r 

,,,=[o,o, of ,  u=[ o,0,0]L ,=[o,o, Rf' 

where COo = 4(g/R) is the Schuler frequency and R is the distance from the centre of the Earth to the point of the object. 
We assume that m is small. We shall then neglect products of ~o and the variations 8r, ~Sv, 5g. Equations (15) 

can be written in scalar form in the following manner 

80"~ - 20~ 208v : = ~JA~x v o 
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8gx = 8~/x - 8ax, 88y = 8L/y +80)Zu o - Say (16)  

8g z :Su z -8%0°-~a~ 

~ : - S v x = - - ~ y R ,  ~ , - ~ y = S m x R ,  ~ : - S u , = 0  

We will consider the instrumental errors of all the sensitive elements as mean values on the right-hand sides of 
this system of equations, that is, for constant 8~o, 8a, ~1. We therefore assume that they do not change with time. 

The solutions of  this system of equations can be represented in the form 

s i n m o t - q  i coSWoI 
R R 

= ~ +  m-~o o~+~2 sinmo,+q, mSmot 
R 

moR= mo 

mo R : -  mo + ~ o  ~ + ~ , c o s m o t - q ,  sinmot 

&u; &t. 

8B,~ = _ 8a~ - ~ t  sin0)ot + q l  coS0)ot 
g g 

8S. 8o). aav . . 
"--'- = ~"2"£P " m - - ' - -  g2 smmo t -q2 coSmot 

g m0 8 

ag, =-~-W- ®- ~--~ +,/~3,hI~®od + ~3 ~(,~0)od g m ~  g " • • • 

0)= q)/R 

s,,o _ ~v  ~ ,o  s_~_+~__ L s~,~ _ ~ = (o ~ ÷ N , o  
~':®o. ®0-~o ~o ~':-o. -o---~-o-o' -o. 2-0 ~o 
,~, ~ + ~ ,  ~,=~_~.~®_sgo_~, = ~ + ~ + ~ _ ~ _ 0 )  

= g g 0)o 2 g g q3 o ° g o 

It can be see that, first, the error in the horizontal position of the object, to which the error of the gravitational 
gradiometer reduces, increases with time. Second, the error of the gravitational gradiometer ~4 reduces to the 
oscillatory component of the error in determining the horizontal component of the acceleration due to gravity, 
the velocity and position. Third, the errors in the position, velocity and acceleration due to gravity increase without 
limit with time. 

Translated by E.L.S. 


